BASELINE SURVEY: KANDHAMAL DISTRICT-2016-17, Phase 1 (Special Programme for Promotion of Millets in Tribal Areas of Odisha or Odisha Millets Mission, OMM)

Nabakrushna Choudhury Centre for Development Studies, Bhubaneswar, Odisha (anICSSR Institute in Collaboration with Government of Odisha)

2019

I

BASELINE SURVEY: KANDHAMAL DISTRICT-2016-17, Phase 1 (Special Programme for Promotion of Millets in Tribal Areas of Odisha or Odisha Millets Mission, OMM)

Nabakrushna Choudhury Centre for Development Studies, Bhubaneswar, Odisha (anICSSR Institute in Collaboration with Government of Odisha)

2019

Citation: NCDS, "Baseline Survey: Kandhamal District 2016-17, Phase-1 (Special Programme for Promotion of Millets in Tribal Areas of Odisha or Odisha Millets Mission, OMM)," Nabakrushna Choudhury Centre for Development Studies, Bhubaneswar, June 2019.

Copyright: © Nabakrushna Choudhury Centre for Development Studies (NCDS)

STUDY TEAM

Lead Author Ms. Rashmi Rekha Samal

Project Coordinators Dr. Chita Ranjan Das Dr. Biswabas Patra

Research Assistant Mr. Arakshit Patra

Computer Operator Mr. Bikash Pradhan

Post-Doctoral Fellow Dr. Narayani Rajashree Kanungo

Phd Scholar Ms. Diptimayee Jena

Field Investigators

Mr. Biren Mitra Nayak (Daringibadi) Mr. Utkal Dandasena (Kotagarh) Mr. Nabin Digal (Phiringia) Mr. Utkal Keshari Nayak (Raikia) Mr. Naresh Pradhan (Raikia)

Principal Investigator

Prof. Srijit Mishra

FOREWORD

The seeds for the "Special Programme for Promotion of Millets in Tribal Areas of Odisha" (or, Odisha Millets Mission, OMM) were sown at a consultation meeting held on 27 January 2016 at Nabakrushna Choudhury Centre for Development Studies (NCDS) under the Chairmanship of the Development Commissioner-cum-Additional Chief Secretary (DC-cum-ACS), Government of Odisha, and Chairperson, NCDS,

Mr. R Balakrishnan. The consultation meeting had representatives from different line departments of the Government of Odisha, members of different civil society groups from across the country and from within the state (which, among others, included the Alliance for Sustainable and Holistic Agriculture (ASHA), the Millets Network of India (MINI), the Revitalizing Rainfed Agriculture (RRA) Network of India, that brought in their experiences, and the academia that included among others Dr. T Prakash, Chairperson, Karnataka Agricultural Price Commission.

As per the decision taken at the consultation meeting, NCDS submitted a proposal to the Government of Odisha on the revival of millets. Lo and behold, there was an announcement in the budget speech of 18 March 2016 conveying that the Government of Odisha intends to revive millets. This led to a series of interactions and a memorandum of understanding (MoU) was signed on 27 February 2017 between the Directorate of Agriculture and Food Production (DAFP) as the state level nodal agency that would monitor and implement the programme, NCDS as the state secretariat that would also anchor the research secretariat, and Watershed Support Services and Activities Network (WASSAN) that would anchor the programme secretariat as part of the state secretariat.

It was in 2017-18 that budget was apportioned and after the selection of facilitating agencies, the programme was implemented in *kharif* 2017 in 27 of the 30 blocks that were selected to be part of OMM. To help us better assess OMM, the baseline scenario of 2016-17, that is, prior to intervention in *kharif* 2017 is important.

After obtaining a list of farmers households (HHs) that were growing millets, as part of the programme in *kharif* 2017, a survey design was firmed up, and a baseline survey was conducted among 7000+ HHs during October/November of 2017. The information collected from these HHs in 27 blocks spread across seven districts are being put up as baseline reports.

The current baseline report is that of Kandhamal and the lead author for this has been Ms. Rashmi Rekha Samal, Ph. D. Scholar, NCDS, whose Ph. D. work is on a related theme and some of the aspects reported here also form part of her thesis. As Principal Investigator, I compliment her and all the members of the team for taking up this arduous work and in bringing the results into completion.

The preliminary results from the baseline survey and the outcome from *kharif* 2017 has been encouraging. Production, yield and returns from millets have more than doubled in areas under OMM. It is this and a demand from the communities that led the government to increase the scope of OMM from 30 blocks in 2017-18 to 55 blocks (an addition of 25 blocks in the second phase) in 2018-19 and will have 72 blocks (a further addition of another 17 blocks in the third phase) in 2019-20. It is for this that the seven district-specific baseline survey reports and an aggregate state-level report are being referred to as first phase baseline survey reports.

Concurrently, the scope of OMM has also led to convergence with other departments. Some of these being the involvement of women self-help groups (SHGs) in putting up a stall of *Mandia Café* at the Hockey World Cup 2018, the procurement of *ragi* (finger millets) in *kharif* 2018, the plans to pilot millet meals and provide millet *ladoos* in *Aanganwadis* in 2019. There has been interest in OMM from the central as also other state governments. OMM has also raised curiosity among scholars within the country as also abroad. And, so they say, the proof of OMM is in its reverberation.

Srijit Mishra Director, NCDS

ACKNOWLEDGEMENTS

Preparation of this report required concerted efforts of a number of individualsand institutions. First and foremost, we would like to express our sincere gratitude to farmers, farmers' representatives/associations, senior officers from the state Government, particularly to Mr. R Balakrishnan, Indian Administrative Service (IAS), former Development Commissioner cum Additional Chief Secretary (DC-cum-ACS) and former Chairman, Nabakrushna Choudhury Centre for Development Studies (NCDS); Mr. Asit Kumar Tripathy, IAS, DC cum ACS, Government of Odisha and Chairman, NCDS; Mr. Manoj Ahuja, IAS, former Principal Secretary, Department of Agriculture and Farmers' Empowerment (DAFE); Dr. Saurabh Garg, IAS, Principal Secretary, DAFE; Mr. Bhaskar Jyoti Sarma, IAS, Special Secretary, DAFE; Mr. Hari Ballav Mishra, IAS, former Director, Directorate of Agriculture and Food Production (DAFP); Dr. M. Muthukumar, IAS, Director, DAFP; Dr Brundha D. IAS, Collector, Kandhamal District, Mr. Kashinath Khuntia, Joint Director Agriculture (JDA), Millets & Integrated Farming, DAFP; Dr.Ananda Chandra Sasmal, Agronomist, DAFE; Mr. Ansuman Pattnayak, Assistant Agriculture Officer (AAO), Farm, Millets, DAFP; and Mr. Sanjay Kumar Pani, AAO, DAFP.

We also express our sincere thanks and gratitude to district level officers of Kandhamal District, particularly to Mr. Pradeep Kumar Rath, DDA-cum-PD ATMA, Mr. Hemant Kumar Das, Scheme Officer; Mr. Sudeepta Pradhan, AAO, Raikia Block, Mr. Sabyasachi Das, AAO, Phiringia, Mr. Pabitra Mohan Sahoo, AAO, Daringibadi, Mr. Jyoti Ranjan Mishra AAO, Kotgarh Block.

We also express our gratitude to Mrs. Sumati Jani, Odisha Finance Service, (OFS), Secretary, NCDS; Mr. Srikanta Rath, former Administrative Officer; Mrs. S.M. Pani, Computer Programmer; Mr. D.B. Sahoo, P.A to Director; Mr. P.K. Mishra, Senior Assistant; Mr. P.K. Mohanty, Jr. Accountant; Mr. N.K.Mishra, Jr. Stenographer and Mr. P.K. Mallia, Computer literate Typist; Mr. Niranjan Mohapatra, Librarian; Mr. S.B. Sahoo, photocopy Operator for their support, help and cooperation.

Special thanks are due to the members of the Programme Secretariat, Watershed Support Services and Activities Network (WASSAN), particularly to Mr. Dinesh Balam, Consultant, Programme Secretariat; Mrs. Aashima Choudhury, State Coodinator, Mr. Ramani Ranjan Nayak, Regional Coodinator, Mr. Chitrasen Pradhan, Former Districtt Coordinator, Mr. Ramachandra Tosh and Mr. Yasobanta Baliarsing, present District Coordinators in Kandhamal district who have helped in our data collection work and in addressing other queries.

We would like to thank to the members of the Facilitating Agencies (FAs) working in these four blocks of the district, namely, Agragamee, JAGRUTI and SWATI who have supported a lot during data collection. We also express our hearty thankfulness to our Field Investigators Mr. Biren Mitra Nayak, Mr. Utkal Dandasena, Mr. Nabin Digal, Mr. Utkal Keshari Nayak and Mr. Naresh Pradhan, who have tirelessly collected the data from difficult tribal areas.

We also would like to thank Mr. Arakshit Patra, Research Assistant, Mr. Bikash Pradhan, Computer Assistant, who have supported in the preparation of this report and Mr. Sarat Kumar Khandai who has helped in data entry work. We also thank Mr. Manoranjan Mishra, Ms. Rajadarshini Patra and Mr. Lokanath Sahoo, who worked in the Project as Research Assistants. We would like to sincerely thank them all farmer households, without their cooperation, collection of data would not have been possible. Our sincere thanks to all of them.

Rashmi Rekha Samal

EXECUTIVE SUMMARY

§1 Study Area

- **§1.1** The study area in Kandhamal district constitutes of four blocks out of twelve blocks in the district namely Daringbadi, Kotgarh, Phiringiaand Raikia.
- §1.2 Out of 628 millet growing HHs under baseline survey, 346 HHs from Daringbadi, 58 HHs from Kotgarh, 52 HHs from Phiringia and 136 HHs from Raikia are covered under this programme.

§2 Socio-Economic Profile

- §2.1 Four social categories were found in the surveyed blocks. Out of 628 HHs, 523 HHs belongs to ST, 41 HHs belongs to SC, 64 HHs belongs to OC. These four blocks are tribal dominated area.
- §2.3. From the surveyed HHs, people belong to two religious communities such as Hindus (54.3%) and Christians (45.7%).
- §2.4 Incidence of poverty is very high in surveyed blocks, BPL (91.4 %). Raikia Block is highest among the four blocks with 95.6 percent being in below poverty line.
- §2.5 In the surveyed blocks, 94.4 percent HHs are engaged in agriculture activities, 5.7 percent HHs are engaged in non-agricultural activities, 0.8 percent HHs are engaged in Minor Forest Produce (MFP) and in other activities, only 0.5 percent engaged in business and 0.3 percent HHs are service holder.
- **§2.6** From the total surveyed HHs, 2.5 percent have *pucca* house, 52.7 percent have semi-*pucca* house and 44.7 percent have *kutcha* house.
- **§3.** Production and productivity
- \$3.1 The total production of different types of millets cultivated by 592 HHs is around 411.7 quintals.
- §3.2 All 592 HHs have cultivated *ragi* (finger millet) in 163.2 ha (hectares). Next is *jahna* in 8.6 hectares cultivated by 61 HHs, 46 HHs have cultivated *kangu* in 9.2 ha and 51 HHs have cultivated *suan* (little millet) in 5.3 ha of land.
- **§3.3** From the total production of 411.7 quintals, *ragi* was 360.6 quintals, *jahna* was 18.2 quintals, *kangu* was 10.8 quintals and *suan* was 22.1 quintals.
- **§3.4** The per HH average millet yield rate in four selected blocks is 0.7 quintal, where average production of *ragi* per HH is 0.6 quintal, *jahna* is 0.3 quintal and *kangu* is lowest among the four types i.e. 0.2 quintal and *suan* is 0.4 quintal.

- §3.5 Per hectare average millet yield rate in four surveyed blocks is 2.2 quintal. It was 2.2 qtls/ha for *ragi*, 2.2 qtls/ha for *janha*, 1.2 quintals for *kangu*and 4.2 qtls/ha for *suan*.
- **§3.6** In Daringbadi, 346 HHs (all the HHs) have cultivated millets in 87.1 hectares producing 163.1 quintals. This gives a yield of 1.9 qtl/ha and per HH production of 0.5 qtl/HH.
- **§3.7** In Kotagarh, 58 HHs have cultivated millets in 28.7 hectares producing 64.8 quintals. This gives a yield of 2.2 qtls/ha and per HH production of 1.1 qtl/HH.
- **§3.8** In Phiringia, 52 HHs have cultivated millets in 31.6 hectares producing 66.8 quintals. This gives a yield of 2.1 qtls/ha and per HH production of 1.3 qtls/HH.
- **§3.9** In Raikia, 136 HHs have cultivated millets in 38.6 hectares producing 117.2 quintals. This gives a yield of 3.1 qtls/ha and per HH production of 0.9 qtl/HH.

§4 Package of Practices

- **§4.1** From 592 HHs cultivating *ragi* in 163.2 hectares of land, 447 HHs have used broadcasting method in 119.1 ha with production of 242.3 quintals with the yield rate 2 qtls/ha, 86 HHs have used line sowing method in 20.6 hectares of land with production of 61.5 quintals with the yield rate of 3 qtls/ha, 23 HHs have used transplanting method in 4.4 ha of land with production of 18.2 quintals with the yield rate of 4.2 qtls/ha, 3 HHs have used System of Millet Intensification (SMI) method in 0.6 hectares of land with 2.6 quintals production with a yield rate of 4.2 qtls/ha.
- **§4.2** From 61 HHs cultivating *jahna* in 8.6 hectares with 18.3 quintals production, 53 HHs have adopted broadcasting method in 6.7 hectares of land with production 13.3 quintals and yield rate was 2 qtls/ha, 7 HHs have cultivated through line sowing in 1.6 hectares of land with production 4.8 quintals and yield rate was 3 qtls/ha and only 1 HH has used both broadcasting and line transplanting method in 0.2 hectares of land with production 0.2 quintal and yield rate was 1 qtl/ha.
- **§4.3** From 46 HHs cultivating *kangu* in 9.2 hectares of land with 10.8 quintals production with the yield rate of 1.2 qtl/ha.
- **§4.4** From 51 HHs cultivating *suan* in 5.2 hectares of land with 22.1 quintals production, 43 HHs have adopted broadcasting method in 3.8 hectares of land with production 16.7 quintals and yield rate was 4.2 qtls/ha, 5 HHs have cultivated through line sowing in 1.1 hectare of land with production 4.3 quintals and yield rate was 3.7 qtls/ha, only 1 HH has used SMI method in 0.2 hectare of

land with production 0.2 quintal and yield rate was 1 qtl/ha, 2 HHs have adopted both line sowing and SMI method in 0.1 ha of land with production 1 quintal and yield rate was 12.5 qtls/ha.

§5 Consumption

- **§5.1** The consumption of millet is more in summer season than rainy and winter seasons.
- **§5.2** Findings regarding different meals of the day (not mutually exclusive) the total HHs, 60.7 percent HHs consumed millet as breakfast, 87.4 percent HHs consumed in lunch, 36 percent HHs consumed as evening snacks and 4.3 percent HHs consumed as dinner.
- **§5.3** People consume millets in different forms in the surveyed blocks. 71.7 per cent HHs consume millets as *jau* (*ragi* porridge). 54.1 per cent HHs consume millet in the form of *pitha* (cake or bread). 24.2 percent HHs consume millets in the form of *tampo* (semi-liquid sweet dish). Another popular millet recipe is *mandia torani*, and it is a common food for 82.0 percent HHs and 1.6 percent HHs consume millet in the form of *handia* (*ragi* beer).

§6 Processing and Marketing

- §6.1 The processing of millets was done as follows: manually by52.4 percent HHs, machines by 35.0 percent HHs and both manually as also machines by 12.6 percent HHs.
- § 6.2 60.3 per cent HHs are able to access processing unit within 10 kms distance. 38.6 per cent HHs can access within 11-20 kms distance and 1.1 per cent HHs can access which is more than 20 kms distance from their village.
- §6.3 51 HHs sold their millet to mill owner, 12 HHs sold their millets to middlemen,67 HHs sold their millet to local traders, 52 HHs sold in the weekly market andhighest 82 HHs sold their millet to the money lenders.

No	Title	Page
	Foreword	v
	Acknowledgements	vii
	Executive Summary	ix
	Contents	xii
	List of Tables	xiii
	List of Figures	xiii
	Abbreviation	xiv
1	Introduction	1
1.1	Background	1
1.2	District Profile	1
1.3	Objectives	2
1.4	Methodology	3
1.5	Chapterization	4
2	Socio-economic Profile of Households Surveyed	5
2.1	Introduction	5
2.2	Demographic Profile	5
2.3	Poverty Status	6
2.4	Economic Activities	6
2.5	Structure of House	7
2.6	Conclusion	7
3	Production	8
3.1	Introduction	8
3.2	Area, Production and Yield	8
3.3	Perception on Quality of Seeds Used	11
3.4	Package of Practices	11
3.5	Conclusion	13
4	Consumption	14
4.1	Introduction	14
4.2	Consumption during different Meals of the Day	14
4.3	Season-wise Consumption	14
4.4	Millet Recipes Consumed	15
4.5	Conclusion	15
5	Processing and Marketing	16
5.1	Introduction	16
5.2	Processing Units	16
5.3	Accessibility to Processing Units	16
5.4	Marketing	17
5.5	Conclusion	17
6	Major Findings	18
ସଂଯୁକ୍ତ ଗୃହ-୧	ପରିବାର ସମ୍ବନ୍ଧୀୟ ପ୍ରଶ୍ୱାବଳୀ	19
ସଂଯୁକ୍ତ ଗୃହ-୨	-	21

CONTENTS

No	Title	Page
Table 1.1	Key Indicators of Kandhamal District	3
Table 1.2	Households Surveyed in Kandhamal District	4
Table 2.1	Distribution of Households by Social Groups across Blocks	5
Table 2.2	Distribution of Population by Gender across Blocks	6
Table 2.3	Distribution of Households by Religion across Blocks	6
Table 2.4	Distribution of Households by Poverty Status across Blocks	6
Table 2.5	Distribution of Households by Economic Activities across Blocks	7
Table 2.6	Distribution of Households by House Structure across Blocks	7
Table 3.1	Area, Production and Yield Rate of Millets in Kandhamal District	9
Table 3.2	Area, Production and Yield Rate of Millets in Daringbadi	9
Table 3.3	Area, Production and Yield Rate of Millets in Kotagarh	10
Table 3.4	Area, Production and Yield Rate of Millets in Phiringia	10
Table 3.5	Area, Production and Yield Rate of Millets in Raikia	11
Table 3.6	Perception of Respondents regarding Quality of Seeds Used	11
Table 3.7	Package of Practices for ragi Cultivation in Kandhamal district	12
Table 3.8	Package of Practices for jahna Cultivation in Kandhamal district	12
Table 3.9	Package of Practices for kangu Cultivation in Kandhamal district	13
Table 3.10	Package of Practices for suan Cultivation in Kandhamal district	13
Table 4.1	Millets Consumption during different Meals of the Day	14
Table 4.2	Season-wise Consumption of Millets	14
Table 4.3	Consumption of Millet Recipes	15
Table 5.1	Method of Processing of Millets	16
Table 5.2	Availability and Accessibility of Processing Units	16
Table 5.3	Distance to Access Processing Unit	17
Table 5.4	Distribution of Households by Mode of Selling Millets across Blocks	17

LIST OF TABLES

LIST OF FIGURES

No	Title	Page
Fig-1.1	Map of Kandhamal District with Blocks	S
Fig-2.1	Percentage Distribution of HHs by Social Groups	5
Fig-2.2	Percentage Distribution of HHs by House Structure	7
Fig-3.1	Perception on Quality of Seeds Used (%)	11

ABBREVIATIONS

AL	: Agricultural Labour
ATMA	: Agricultural Technology Management Agency
AWC	: Anganwadi Centre
CCD	: Centre for Community Development
FGD	: Focused Group Discussion
На	: Hectares
HHs	: Households
ICDS	: Integrated Child Development Scheme
MDM	: Mid Day Meal
MFP	: Minor Forest Produce
MGNREGA	: Mahatma Gandhi National Rural Employment Guarantee Act
NCDS	: Nabakrushna Choudhury Centre for Development Studies
OFS	: Odisha Finance Service
OBC	: Other Backward Classes
OC	: Other Castes
OMM	: Odisha Millet Mission
PDS	: Public distribution system
SC	: Scheduled Caste
SMI	: System of Millet Intensification
SP	: Sale Price
ST	: Scheduled Tribe
WASSAN	: Watershed Support Service and Activities Network

1 INTRODUCTION

1.1 Background

The Odisha Millets Mission (OMM), a recent unique innovative arrangement of government, civil society and academia, has wide ranging implications for the production and consumption of millets. To revive millets, a flagship programme called "Special Programme for Promotion of Millets in Tribal Areas" is being launched and implemented to promote food security and nutrition security in the indigenous parts of Odisha by Department of Agriculture and Farmers Empowerment, Odisha. This programme intends to revive millets in rainfed farming systems and household consumption with specific objectives including i) inclusion of millets in State Nutrition Programmes such as ICDS, MDM, ITDA, Welfare Hostels and PDS; ii) increasing HHs consumption by setting up decentralized processing units at Panchayat and Block level; iii) improving productivity through improved agronomic practices and organic inputs; iv) increased availability of millet seeds through community managed/community owned seed centres with focus on local varieties; v) strengthening of farmer Cooperatives/ Farmer Producers Organizations for better marketing of millets. At present, the programme intervention area coverage expands to 72 Blocks in 14 Districts benefiting 31,099 farmer HHs in 12,334 hectare area.

1.2 District profile

Kandhaml Revenue District came into instance on 1st January 1994 after Phulbani District was divided into Kandhamal and Boudh District of Odisha. The district lies between 19 degree 34' to 20 degree 36' North Latitude and 83 degree 34' to 84 degree east longitude.

Kandhamal experiences sub-tropical hot and dry climate in summer and dry and cold climate in winter. The maximum temperature recorded in the district is 45.5 degree C and minimum temperature is 2.0 degree C. The average annual rainfall recorded is 1522.95 mm. The kandhamal district covering a geographical area of 7654sq. kms is surrounded by Boudh district in the North, by Rayagada district in the South, by Ganjam and Nayagarh district in the East and Kalahandi district in the West.

The soil in the district is mostly wet-laterite group, having organic matters contents. As such, the water holding capacity is very low. The PH value of the soil varies 5.3 to 6.5, this is acidic in nature. The Big chunk of land consists of red laterite sandy loam soils being exposed to constant soil erosion and run off devoid of humus contents

render in fertile and turn into barren waste lands. The important crops grown in the district during kharif season is paddy, maize and niger. In irrigated areas, crops like potato, vegetable and mustard are cultivated.

Kandhamal has two sub divisions viz. Phulbani and Baliguda with 12 Tahasils, 12 blocks and 153 Gram Panchayats.

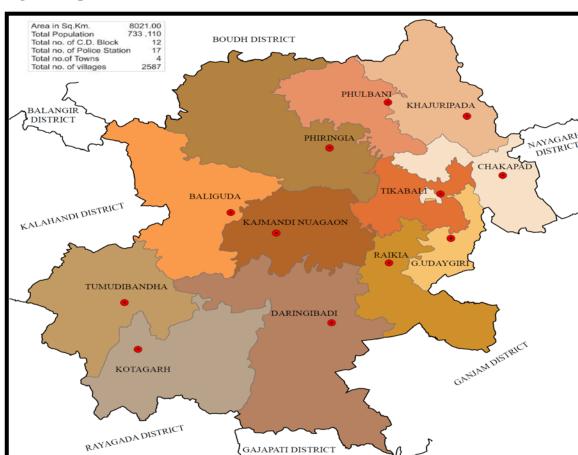


Fig 1.1 Map of Kandhamal District with Blocks

Source: http://gisodisha.nic.in/Block/KANDHAMAL.pdf

1.3 **Objectives**

The objectives of the baseline survey was to obtain information on proposed interventions under OMM around production, consumption, processing and marketing. It is also pertinent to have some background information of the HHs surveyed. The objectives are as follows:

GAJAPATI DISTRICT

To assess the socio-economic condition of the HHs

To outlinemillet production, productivity and package of practices

To examine the consumption pattern of millets

To elucidate the method of processing and mode of marketing

Table 1.1: Key Indicators of Kandhamal District	
Indicators	Value
Census 2011	
Population (In Lakh)	7.3
Male(In Lakh)	3.6
Female(In Lakh)	3.7
Scheduled Caste(In Lakh)	1.2
Scheduled Tribe(In Lakh)	3.9
No.of HHs (In Lakh)	1.7
Average HH Size	4.3
Sex Ratio	1037
Total Worker (In Lakh)	3.3
Main Worker(In Lakh)	1.7
Marginal Worker(In Lakh)	1.9
Non-Worker(In Lakh)	3.8
Work Participation Rate (WPR)	48.5
Literacy Rate (%)	64.1
Land Use Pattern (Area in '000 ha), 2014-15 *	
Forest	170
Land put to Non-agricultural use	21
Barren & Non-Cultivable Land	103
Permanent Pasture	13
Net Area Sown	57
Cultivable waste Land	19
Other Fallow	28
Current Fallows	28
Misc. Trees and Groves	1
District at a Glance 2016*	
Average Fertilizer Consumption (Kg/ha)	8.3
Avg. Size of Holding per HH(In Nos.)	1.01
Irrigation Potential ('000 ha)	101.2
No. of villages electrified(In Nos.)	1044
No. of banks(In Nos.)	09
No. of AWCs(In Nos.)	2243
No. of BPL families(In Nos.)	154217
No. of Job Cards Issued(In Nos.)	142830
No. of Beneficiaries Provided Employment in MGNREGA (In Nos.)	130020
Source: District Statistical Hand book- Kandhamal, 2011 *District at a Glance-2016 Note: MANGERS is Mahatma Gandhi National Rural Employment Guarantee Scheme	

Table 1.1: Key Indicators of Kandhamal District

1.4 Methodology

1.4.1 Study Area

Kandhamal district is proposed by OMM to study on promotion of Millets. The climatic condition is convenient for millets cultivation, for which Kandhamal District is selected for the survey. Out of twelve blocks, four blocks have been surveyed and they are Daringbadi, Kotgarh, Phiringia and Raikia.

1.4.2 Universe

All the HHs covered under OMM, as per the list provided by Programme Secretariat, formed the universe. Out of 628 millets growing HHs under baseline survey, 346 HHs from Daringbadi, 58 HHs from Kotagarh, 52 HHs from Phiringia and 136 HHs from Raikia are covered under this programme. Out of 628 millet HHs, 36 HHs were not cultivating millets during 2016-17 (Table-1.2).

Programme		Surve	Surveyed		Cultivated	HHs	did not
HHs		HHs		Millet	ts in	Cultiv	ate Millets
				2016-	2016-17		6-17
No	%	No	%	No	%	No	%
348	54.5	346	55.1	346	58.4	0	0
97	15.2	94	15.0	58	9.8	36	100
52	8.2	52	8.3	52	8.8	0	0
141	22.1	136	21.7	136	23.0	0	0
638	100.0	628	100.0	592	100.0	36	100
	HHs No 348 97 52 141	HHs No % 348 54.5 97 15.2 52 8.2 141 22.1	HHs HHs No % No 348 54.5 346 97 15.2 94 52 8.2 52 141 22.1 136	HHs HHs No % 348 54.5 346 55.1 97 15.2 94 15.0 52 8.2 52 8.3 141 22.1 136 21.7	HHs HHs Miller No % No % No 348 54.5 346 55.1 346 97 15.2 94 15.0 58 52 8.2 52 8.3 52 141 22.1 136 21.7 136	HHs HHs Millets in 2016-17 No % No % 348 54.5 346 55.1 346 58.4 97 15.2 94 15.0 58 9.8 52 8.2 52 8.3 52 8.8 141 22.1 136 21.7 136 23.0	HHsHHsMillets in $2016-17$ Cultiv in 201No%No%No 348 54.5 346 55.1 346 58.4 097 15.2 94 15.0 58 9.8 36 52 8.2 52 8.3 52 8.8 0 141 22.1 136 21.7 136 23.0 0

Table 1.2:	Households	Surveyed in	Kandhamal District

Source: WASSAN & Field Survey

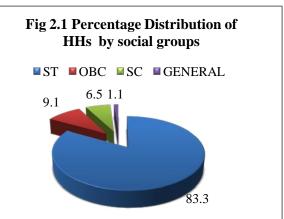
1.4.3 Data Collection

The study is largely based on baseline survey. Some information are based on the secondary data for the introductory chapter. The primary data is collected from the respondents in concern districts by using pre-tested interview schedule (Annexure 1 and 2). The basic information from all the intervened HHs was collected through household schedule and Focused Group Discussions (FGDs).

1.5 Chapterization

The baseline survey has been divided into six chapters including the current Chapter 1, which provided introduction, district profile, objectives and study design. Chapter 2provides demographic features and distribution of HHs by economic activity of HHs surveyed. Chapter 3 provides details on production and productivity of millets. Chapter 4 discusses consumption pattern of millets. Chapter 5 elucidates on processing and marketing of millets. Chapter 6 indicates the major findings and conclusion.

2 SOCIO-ECONOMIC PROFILE OF HOUSEHOLDS SURVEYED


2.1 Introduction

This chapter looks into social and demographic profile of HHs surveyed that is their distribution by social group and religion and the distribution of population by gender. In addition, for the HHs surveyed, it provides the distribution by poverty status, distribution by economic activities (not mutually exclusive, as a HH can have multiple economic activities) and distribution by house structure.

2.2 DemographicProfile

Out of 12 blocks in Kandhamal district, OMM programme started first phase

programme in four blocks such as Daringbadi, Kotagarh, Phiringia and Raikia. 628 millet HHs are covered under this programme. The distributions of social group-wise millet farmer HHs are shown in table 2.1. It shows that out of 628 HHs, 523 HHs (83.3%) belong to ST, 64 HHs

(10.2%) belong to OC and 41 HHs(6.5%) belong to SC category. It is observed that these four blocks are tribal dominated area. This data reveals that millet farmers HHs are more in Daringbadi block (55.1%), 21.7 percent arein Raikia block, 15 per cent are in Kotgargh block and 8.3 per cent are in Phiringia block (Fig-2.1).

Social	Daringbadi		Kotagarh		Phirin	Phiringia		Raikia		
Groups	No	%	No	%	No	%	No	%	No	%
SC	10	2.9	16	17	2	3.8	13	9.6	41	6.5
ST	325	93.9	74	78.7	50	96.2	74	54.4	523	83.3
OC	11	3.2	4	4.3	0	0	49	36	64	10.2
Total	346	100.0	94	100	52	100	136	100	628	100
_	(55.1)		(15.0)		(8.3)		(21.7)		(100.0)	

Table 2.1: Distribution of Households by Social Group across Blocks

Source: Field Survey

N.B.: Figures in parentheses represent percentage to the respective total

The total population as per the surveyed HHs is around 2246. The share of female population is little higher than the male population. 50.6 per cent are female and 49.4 per

cent are male from the total population. Daringbadi has the highest number of population among all the surveyed blocks (Table-2.2).

Gender	Daring	gbadi	Kotagarh		Phirir	Phiringia F		Raikia		
	No	%	No	%	No	%	No	%	No	%
Male	653	49.4	175	48.7	72	48.6	209	50.0	1109	49.4
Female	668	50.6	184	51.3	76	51.4	209	50.0	1137	50.6
Total	1321	100.0	359	100.0	148	100.0	418	100.0	2246	100.0

Table2.2: Distribution of Population by Gender across Blocks

Source: Field Survey

From the surveyed HHs, people belong to two religious communities such as Hindus (54.3%) and Christians (45.7%) (Table 2.3).

Table 2.3: Distribution of Households by Religion across Blocks

					<u> </u>	,				
Religion	Darin	gbadi	Kotagarh		Phiringia		Raikia		Total	
	No	%	No	%	No	%	No	%	No	%
Hindu	137	39.6	17	18.1	52	100.0	135	99.3	341	54.3
Christian	209	60.4	77	81.9	0	0.0	1	0.7	287	45.7
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0
G	. ~									

Source: Field Survey

2.3 Poverty Status

Table 2.4 shows that incidence of poverty is very high in surveyed blocks, more than two third of the population live below poverty line (91.4%). And Raikia block is highest among the four blocks with 95.6 per cent.

Economic	Daringbadi		Kotagarh		Phiringia		Raikia		Tota	
Category	No	%	No	%	No	%	No	%	No	%
BPL	313	90.5	86	91.5	45	86.5	130	95.6	574	91.4
APL	33	9.5	8	8.5	7	13.5	6	4.4	54	8.6
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0

 Table 2.4: Distribution of Households by Poverty Status across Blocks

Source: Field Survey

Note: BPL is below poverty line and APL is above poverty line

2.4 Economic Activities

Table 2.5 shows that 94.4 per cent HHs are engaged in agriculture activities, 5.7 per cent HH are engaged in non-agricultural activities, 0.8 per cent HHs are engaged in Minor Forest Produce (MFP) and in other activities such as labour, cow grazing and HH activities etc, only 0.5 per cent HHs are engaged in business and 0.3 per cent HHs are service holders. The data revealed that agriculture is the main occupation of HHs in all blocks.

Economic Activity	Dariı	Daringbadi		Kotagarh		Phiringia		Raikia		
	No	%	No	%	No	%	No	%	No	%
Agriculture	346	100.0	59	62.8	52	100.0	136	100.0	593	94.4
Non-Agricultural Work	1	0.3	33	35.1	0	0.0	2	1.5	36	5.7
Service holder	1	0.3	1	1.1	0	0.0	0	0.0	2	0.3
Business	1	0.3	1	1.1	1	1.9	0	0.0	3	0.5
MFP	2	0.6	3	3.2	0	0.0	0	0.0	5	0.8
Others	1	0.3	0	0.0	0	0.0	4	2.9	5	0.8
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0

Table 2.5: Distribution of Households by Economic Activities across Blocks

Note: Activities total are not additive, as activities are not mutually exclusive

2.5 Structure of House

Out of the total surveyed HHs in the district, 2.5 per cent have *pucca* house, 52.7 percenthave semi-*pucca* house and 44.7 per cent have *kutcha* house. From the surveyed blocks, Raikia block only have *pucca* house. The percentage of *kutcha* house is also highest in the same block (Table-2.6).

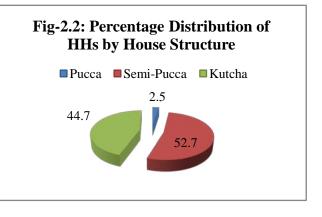


Table 2.6: Distribution of Households by House Structure across Blocks

House Types	Darin	ngbadi	Kotgarh		Phiringia		Raikia		Total	
	No	%	No	%	No	%	No	%	No	%
Pucca	0	0.0	0	0.0	0	0.0	16	11.8	16	2.5
Semi-Pucca	194	56.1	89	94.7	28	53.8	20	14.7	331	52.7
Kutcha	152	43.9	5	5.3	24	46.2	100	73.5	281	44.7
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0

Source: Field Survey

2.6 Conclusion

The socio-economic condition of the HHs surveyed indicate that majority are ST population with 83.3 per cent and only 1.1 per cent is from general category. Two religious communities reside there, such as Hindus (54.3%) and Christians (45.7%). 91.4 per cent HHs are from BPL category. Agriculture seems to be their main occupation with other allied activities. The next chapter, Chapter 2, looks into aspects of production and productivity of millets.

3 PRODUCTION

3.1 Introduction

In this chapter an attempt has been made to understand the status of area, production and productivity of millets, usage of seeds and package of practices in Kandhamal district. These are based on baseline data of 2016-17 from HHs surveyed in Daringbadi, Kotagarh, Phiringia and Raikia, the blocks where OMM has been operational since *kharif* 2017.

3.2 Area, Production and Yield

Table-3.1 shows during the year 2016-17there are four types of millets cultivated in the surveyed blocks of Kandhamal district. These are *ragi*, *jahna*, *kangu* and *suan*. The total production of different types of millets by 592 HHs, covered under the OMM programme is around 411.7 quintals. All 592 HHs have cultivated *Ragi*, locally called as *mandia*. There are different types of *mandia* including *badamandia*, *sana mandia and kala mandia* cultivated in the surveyed blocks. Next is *jahna* cultivated by 61 HHs, 46 HHs have cultivated *kangu* and 51 HHs have cultivated *suan*. All HHs have cultivated *ragi*, but all the HHs have not cultivated *suan*, *kangu* and *jahna*. It is observed that out of total cultivated area, *ragi* was cultivated in 163.2 ha of land, *jahna* cultivated in 8.6 ha of land, *kangu* cultivated in 9.2 ha of land and *suan* cultivated in 5.3 ha of land. Table 4.1 shows the area, production and yield rate of different types of millets during 2016-17 before the implementation of OMM.

Out of the total production of 411.7 quintals, the share of *ragi* is highest that is 360.6 quintals (87.6%), 18.2 quintals of *jahna* production (4.4%) and 10.8 quintals of *kangu* production (2.6%) and 22.1 quintals of *suan* production (5.4%). If we see per HH average, millet yield rate in four selected blocks is 0.7 quintal, where average production of *ragi* is 0.6 qtl/HH, *jahna* is 0.3 qtl/HH and *kangu* is 0.2 qtl/HH and *suan* is 0.4 qtl/HH. Per hectare average millet yield rate in four selected blocks is 2.2 qtls/ha, *ragi* was 2.2 qtls/ha, *kangu* was 1.2 qtl/ha and *suan* was 4.2 qtls/ha.

1 4510 00	_ · · · · · · · · · · · · · · · · · · ·	loudenoi				110110110		
Millets	HHs		Area		Product	ion	Yield	
	No	%	ha	%	qtl	%	qtl/ha	qtl/HH
Ragi	592	100.0	163.2	87.6	360.6	87.6	2.2	0.6
Jana	61	10.3	8.6	4.6	18.2	4.4	2.2	0.3
Kangu	46	7.8	9.2	5.0	10.8	2.6	1.2	0.2
Suan	51	8.6	5.3	2.8	22.1	5.4	4.2	0.4
Total	592	100.0	186.3	100.0	411.7	100.0	2.2	0.7

Table 3.1: Area, Production and Yield Rate of Millets in Kandhamal District

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to all values.

As shown in Table-3.2, it is observed that out of total millets cultivated HHs in Daringbadi block, 346 HHs (all the HHs) have cultivated *ragi*, 37 HHs (10.7%) have cultivated *jahna*, 43 HHs (12.4%) have cultivated *kangu* and 40 HHs (11.6%) have cultivated *suan*.

In case of area cultivated, out of total area which is 87.1 hectares of land, *ragi* was cultivated in 71.6 hectare of land, *jahna* was cultivated in 3.6 hectares of land, *kangu* was cultivated in 8.6 hectares of land and *suan* was cultivated in 3.3 hectares of land.

In case of production, out of total production which is 163.12 quintals, the production of *ragi* was 128.0 quintals, production of *jahna* was 9.78 quintals, production of *kangu* was 10.4 quintals and the production of *suan* was 15.0 quintals.

In case of per hectares yield rate, the total yield was 1.9 qtl/ha, particularly the yield rate of *ragi* was 1.8 qtls/ha, *jahna* was 2.7 qtls/ha, *kangu* was 1.2 qtls/ha and *suan* was 4.7 qtls/ha. Per HH yield rate of millet was 0.5 qtl/HH yield rate of *ragi* was 0.4 qtl/HH, *jahna* was 0.3 qtl/HH, *kangu* was 0.2 qtl/HH and *suan* was 0.4 qtl/HH.

Millets	HHs		Area		Product	ion	Yield	
	No	%	ha	%	qtl	%	qtl/ha	qtl/HH
Ragi	346	100.0	71.6	82.2	128.0	78.5	1.8	0.4
Jana	37	10.7	3.6	4.2	9.8	6.0	2.7	0.3
Kangu	43	12.4	8.6	9.8	10.4	6.4	1.2	0.2
Suan	40	11.6	3.3	3.7	15.0	9.2	4.7	0.4
Total	346	100.0	87.1	100.0	163.1	100.0	1.9	0.5

Table 3.2: Area, Production and Yield Rate of Millets in Daringbadi

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to all values.

Table-3.3 shows that in Kotagarh block, out of total 58 millets cultivated HHs, all the HHs have cultivated *ragi* only and not other millets. *Ragi* was cultivated in 28.7 hectares of land with 64.8 quintals production; per hectare yield rate was 2.2 qtls/ha and per HH yield rate was 1.1 quintal.

						0		
Millets	HHs		Area		Production		Yield	
	No	%	ha	%	qtl	%	qtl/ha	qtl/HH
Ragi	58	100.0	28.7	100.0	64.8	100.0	2.2	1.1
Total	58	100.0	28.7	100.0	64.8	100.0	2.2	1.1

Table 3.3: Area, Production and Yield Rate of Millets in Kotagarh

Table-3.4, shows that in Phiringia block out of total 52 millets cultivated HHs, all the HHs have cultivated *ragi* and among them 24 HHs have cultivated *jahna* and 9 HHs have cultivated *suan*. In case of area cultivated, out of total area which is 31.6hectares of land, *ragi* was cultivated in 25.1hectares of land, *jahna* was cultivated in 4.9hectares of land and *suan* was cultivated in 1.6 hectares of land. In case of production, out of total production which is 66.8 quintals, production of *ragi* was 51.8 quintals, *jahna* was 8.5 quintals and *suan* was 6.6 quintals. In the context of per hectares yield rate, the total yield was 2.1 quintals, out of which the yield rate of *ragi* was 2 qtls/ha, *jahna* was 1.7 qtl/ha and *suan* was 4 qtls/ha. In case of per HH yield rate of millet was 1.3 qtls/HH, the yield rate of *ragi* was 0.7 qtl/HH.

Millets	HHs		Area		Produ	ction	Yield	
	No	%	ha	%	qtl	%	qtl/ha	qtl/HH
Ragi	52	100.0	25.1	79.2	51.8	77.5	2	1.0
Janha	24	46.2	4.9	15.7	8.5	12.7	1.7	0.4
Suan	9	17.3	1.6	5.1	6.6	9.8	4	0.7
Total	52	100.0	31.6	100.0	66.8	100.0	2.1	1.3

 Table 3.4: Area, Production and Yield Rate of Millets in Phiringia

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to all values.

In Raikia block, Table-3.5, indicates that out of total 136 millets cultivated HHs, all the HHs (100%) have cultivated *ragi*, 3 HHs (2.2%) have cultivated *kangu* and only 2 HHs (1.5%) have cultivated *suan*. In case of area cultivated, out of total area of 38.6hectaresof land, *ragi* was cultivated in 37.6 hectares of land, *kangu* was cultivated in 0.6 hectares of land and *suan* was cultivated in 0.4 hectares of land. In case of production, out of total production (117.2 quintals), the production of *ragi* was 116.1 quintals, *kangu* production was 0.5 quintal and production of *suan* was 0.6 quintal. In the case of yield, the total per hectare yield of millet was 3.1 qtls/ha, out of which productivity of *ragi* was 3.2 qtls/ha, *kangu* was 0.7 qtl/ha and *suan* was 1.5 qtls/ha. The per HH yield rate of millet was 0.9 qtl/HH, out of which per HH yield rate of *ragi* was 0.2 qtl/HH and *suan* was 0.3 qtl/HH.

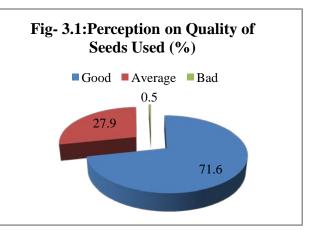

Millets	HHs		Area		Product	tion	Yield	
	No	%	ha	%	qtl	%	qtl/ha	qtl/HH
Ragi	136	100.0	37.6	97.3	116.1	99.1	3.2	0.9
Jahna	0	0.0	0	0.0	0.0	0.0	0.0	0.0
Kangu	3	2.2	0.6	1.7	0.5	0.4	0.7	0.2
Suan	2	1.5	0.4	1.0	0.6	0.5	1.5	0.3
Total	136	100.0	38.6	100.0	117.2	100.0	3.1	0.9

Table 3.5: Area, Production and Yield Rate of Millets in Raikia

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to all values.

3.3 Perception on Quality of Seeds Used

All the HHs have provided response about the quality of seed used in their fields for millet cultivation. It is observed that out of total millet cultivators, 424 HHs used good quality seeds, 165 HHs used average quality seeds and 3 HHs have used bad quality seeds for millet cultivation(Table-3.6).

Table 3.6: Perception	of Respondents r	egarding Ouality	of Seeds Used

Seed Quality	Daringbadi		Kotga	Kotgarh		Phiringia		Raikia		
	No	%	No	%	No	%	No	%	No	%
Good	318	91.9	14	24.1	52	100.0	40	29.4	424	71.6
Average	25	7.2	44	75.9	0	0.0	96	70.6	165	27.9
Bad	3	0.9	0	0.0	0	0.0	0	0.0	3	0.5
Total	346	100.0	58	100.0	52	100.0	136	100.0	592	100.0

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to all values.

3.4 Package of Practices

Table-3.7 shows different agronomic practices used by farmers in the surveyed blocks of Kandhamal such as broadcasting, line sowing, transplanting, SMI method. Out of the total surveyed HHs, all HHs have cultivated *ragi* in 163.2 hectares of land. Out of them, 447 HHs have used broadcasting method in 119.1 hectares of land with production of 242.3 quintals with the yield rate 2 qtls/ha, 86 HHs have used line sowing method in 20.6 ha of land with production of 61.5 quintals with the yield rate of 3 qtls/ha, 23 HHs

have used transplanting method in 4.4 ha of land with production of 18.2 quintals with the yield rate of 4.2 qtls/ha, 3 HHs have used SMI method in 0.6 ha of land with 2.6 quintals production with yield rate of 4.2 qtls/ha.

Table 5.7: Fackage of Fractices for Kagi Cuttivation in Kanunamar											
HHs		Area		Product	ion	Yield					
No	%	ha	%	qtl	%	qtl/ha					
447	75.5	119.1	73.0	242.3	67.2	2.0					
86	14.5	20.6	12.6	61.5	17.0	3.0					
23	3.9	4.4	2.7	18.2	5.0	4.2					
3	0.5	0.6	0.4	2.6	0.7	4.2					
33	5.6	18.4	11.3	36.0	10.0	1.9					
592	100.0	163.2	100.0	360.6	100.0	5.4					
	HHs No 447 86 23 3 33	HHs No % 447 75.5 86 14.5 23 3.9 3 0.5 33 5.6	HHs Area No % ha 447 75.5 119.1 86 14.5 20.6 23 3.9 4.4 3 0.5 0.6 33 5.6 18.4	HHs Area No % ha % 447 75.5 119.1 73.0 86 14.5 20.6 12.6 23 3.9 4.4 2.7 3 0.5 0.6 0.4 33 5.6 18.4 11.3	HHs Area Product No % ha % qtl 447 75.5 119.1 73.0 242.3 86 14.5 20.6 12.6 61.5 23 3.9 4.4 2.7 18.2 3 0.5 0.6 0.4 2.6 33 5.6 18.4 11.3 36.0	HHs Area Production No % ha % qtl % 447 75.5 119.1 73.0 242.3 67.2 86 14.5 20.6 12.6 61.5 17.0 23 3.9 4.4 2.7 18.2 5.0 3 0.5 0.6 0.4 2.6 0.7 33 5.6 18.4 11.3 36.0 10.0					

Table 3.7: Package of Practices for Ragi Cultivation in Kandhamal

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to the total values across package of practices

The total HHs cultivating *jahna* is 61 in 8.6 hectares of land with 18.3 quintals production with 2.1 quintals of yield rate. Among them, 53 HHs have adopted broadcasting method in 6.7 hectares of land with production of 13.3 quintals and yield rate was 2 qtls/ha, 7 HHs have cultivated through line sowing in 1.6 hectares of land with production 4.8 quintals and yield rate was 3 qtls/ha and only 1 HH has used both broadcasting and line transplanting method in 0.2 hectares of land with production 0.2 quintal and yield rate 1 qtl/ha in surveyed blocks (Table-3.8).

Package of practice	HHs		Area		Produ	ction	Yield
	No	%	ha	%	qtl	%	qtl/ha
Broadcasting	53	86.9	6.7	78.8	13.3	72.9	2.0
Line Showing	7	11.5	1.6	18.8	4.8	26.0	3.0
Multiple Methods	1	1.6	0.2	2.4	0.2	1.1	1.0
Total	61	100.0	8.6	100.0	18.3	100.0	2.1

Table 3.8: Package of Practices for Jahna Cultivation in Kandhamal

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to the total values across package of practices

Out of the total surveyed HHs, 46 HHs have cultivated *kangu* in 9.2 hectares of land with 10.8 quintals production with the yield rate of 1.2 qtls/ha in the surveyed blocks (Table-3.9).

Package of practice	HHs	Area		Pro	Production		1
	No	%	ha	%	qtl	%	qtl/ha
Broadcasting	46	100.0	9.2	100.0	10.8	100.0	1.2
Total	46	100.0	9.2	100.0	10.8	100.0	1.2

Source: Field Survey

Out of the total surveyed HHs, 51 HHs have cultivated *suan* in 5.2 hectares of land with 22.1 quintals production and 4.2 quintals yield rate. Among them, 43 HHs have adopted broadcasting method in 3.8 hectares of land with production 16.7 quintals and yield rate was 4.2 qtls/ha, 5 HHs have cultivated through line sowing in 1.1 hectares of land with production 4.3 quintals and yield rate was 3.7 qtls/ha, only 1 HH has used SMI method in 0.2 hectares of land with production of 0.2 quintal and yield rate was 1 qtl/ha, 2 HHs have adopted both line sowing and SMI method in 0.1 hectares of land with production of 1 quintal and yield rate 12.5 qtls/ha in surveyed blocks (Table-3.10).

Package	of	HHs		Area	Pr	oduction	Yield	l
practice		No	%	ha	%	qtl	%	qtl/ha
Broadcasting		43	84.3	3.8	73.5	16.7	75.4	4.2
Line Showing		5	9.8	1.1	21.1	4.3	19.2	3.7
SMI method		1	2.0	0.2	3.8	0.2	0.9	1
All Method		2	3.9	0.1	1.5	1.0	4.5	12.5
Total		51	100.0	5.2	100.0	22.1	100.0	4.2

 Table-3.10: Package of Practices for Suan Cultivation in Kandhamal district

Source: Field Survey

Note: The area and production figures are rounded up to the first decimal, and hence, may not add up to the total values across package of practices

3.5 Conclusion

Four types of millets, viz *ragi*, *jahna*, *kangu* and *suan* were cultivated in Kandhamal during the period covered under baseline survey, 2016-17. The predominant crop grown is *ragi*. Majority of the HHs (71.6%) perceived the seed quality they used to be good. Most of the HHs cultivated millets through broadcasting and some by line sowing or transplantation. Only 4 HHs have adopted SMI method in Kandhamal for the period covered under baseline survey in the surveyed blocks. In the next chapter we discuss consumption of millets.

4 CONSUMPTION

4.1 Introduction

In this chapter an attempt has been made to assess consumption of millets across seasons, consumption of millets during different meals of the day, and on different types of millet recipes/items consumed by the HHs surveyed.

4.2 Consumption during different Meals of the Day

From the total surveyed HHs, it is observed that around 60.7 per cent HHs consume millet items in their breakfast, 87.4 per cent HHs consume millet items in their lunch, 36 per cent HHs take millets as evening snacks and only 4.3 per cent HHs consume millet items in their dinner as shown in Table-4.1.

Food Pattern	Daringbadi Kotgarh		urh	Phirin	igia	Raikia		Total		
	No	%	No	%	No	%	No	%	No	%
Breakfast	131	37.9	90	95.7	30	57.7	130	95.6	381	60.7
Lunch	319	92.2	93	98.9	39	75.0	98	72.1	549	87.4
Evening snacks	36	10.4	84	89.4	0	0.0	106	77.9	226	36.0
Dinner	23	6.6	0	0.0	0	0.0	4	2.9	27	4.3
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0

Table 4.1: Millets Consumption during different Meals in a Day

Source: Field Survey

Note : Column totals are not additions across meals, as a household can consume millets during all meals of the day.

4.3 Season-wise Consumption

Table 4.2 shows that the consumption of millet is more in summer season than rainy and winter seasons. During summer season the availability of other food items reduce and consumption of millets in this situation help them quench hunger and thirst and is also considered as energy giving food.

	- Dease		Jonsu	inpuon or	winte	6				
Food	Darin	gbadi	Kotg	arh	Phiri	ngia	Raikia	a	Total	
Pattern	No	%	No	%	No	%	No	%	No	%
Summer	345	99.7	94	100.0	52	100.0	136	100.0	627	99.8
Rainy	19	5.5	48	51.1	26	50.0	127	93.4	220	35.0
Winter	40	11.6	12	12.8	16	30.8	99	72.8	167	26.6
Total	346	100.0	94	100.0	52	100.0	136	100.0	628	100.0

Table 4.2: Season-wise Consumption of Millets

Source: Field Survey

Note : Column totals are not additions across seasons, as a household can consume millets in all seasons.

4.4 Millet Recipes Consumed

In the surveyed blocks people are consuming millets in different forms, like porridge, bread, cake, snacks, steamed goods and beverage. It is observed that 71.7 per cent HHs consumes millets as porridge, locally called as *jau* or 'mandiajau' (*ragi* porridge).54.1 per cent HHs consume millet in the form of cake or bread. Basically finger millet is used to make flat bread and cake called *pitha*. 24.2 percent HHs consume millets in the form of *tampo*. It is a semi liquid recipe prepared by adding sugar, jaggery, coconut chips, etc. People of all ages particularly children prefer this recipe more compared to other locally made millet items. Another popular millet recipe is *mandia torani*, prepared by adding water in the cooked finger millet. It is a common food for 82 per cent HHs of surveyed blocks and 1.6 per cent HHs consume millet in the form of *millet beer* locally called as *handia* (Table-4.3)

Daringhadi Katagah Dhiringia Daikia Total									
Daring	gbadi	Kotga	rn	Phirin	igia	Ra1K1a	L	Total	
No	%	No	%	No	%	No	%	No	%
245	70.8	84	89.4	0	0.0	121	89.0	450	71.7
101	29.2	86	91.5	18	34.6	135	99.3	340	54.1
17	4.9	6	6.4	0	0.0	129	94.9	152	24.2
313	90.5	90	95.7	52	100.0	60	44.1	515	82.0
9	2.6	1	1.1	0	0.0	0	0.0	10	1.6
346	100.0	94	100.0	52	100.0	136	100.0	628	100.0
	No 245 101 17 313 9	24570.810129.2174.931390.592.6	No % No 245 70.8 84 101 29.2 86 17 4.9 6 313 90.5 90 9 2.6 1	No % No % 245 70.8 84 89.4 101 29.2 86 91.5 17 4.9 6 6.4 313 90.5 90 95.7 9 2.6 1 1.1	No % No % No 245 70.8 84 89.4 0 101 29.2 86 91.5 18 17 4.9 6 6.4 0 313 90.5 90 95.7 52 9 2.6 1 1.1 0	No % No % No % 245 70.8 84 89.4 0 0.0 101 29.2 86 91.5 18 34.6 17 4.9 6 6.4 0 0.0 313 90.5 90 95.7 52 100.0 9 2.6 1 1.1 0 0.0	No % No % No 245 70.8 84 89.4 0 0.0 121 101 29.2 86 91.5 18 34.6 135 17 4.9 6 6.4 0 0.0 129 313 90.5 90 95.7 52 100.0 60 9 2.6 1 1.1 0 0.0 0	No % No % No % 245 70.8 84 89.4 0 0.0 121 89.0 101 29.2 86 91.5 18 34.6 135 99.3 17 4.9 6 6.4 0 0.0 129 94.9 313 90.5 90 95.7 52 100.0 60 44.1 9 2.6 1 1.1 0 0.0 0.0 0.0	No % No % No % No 245 70.8 84 89.4 0 0.0 121 89.0 450 101 29.2 86 91.5 18 34.6 135 99.3 340 17 4.9 6 6.4 0 0.0 129 94.9 152 313 90.5 90 95.7 52 100.0 60 44.1 515 9 2.6 1 1.1 0 0.0 0.0 10

Table 4.3: Consumption of Millet Recipes

Source: Field Survey

Note: Column totals are not additions across recipes, as a household can prepare all recipes.

4.5 Conclusion

Millets are consumed across all seasons, but relatively more in summer. There are different recipes that are popular and millets are consumed at all meal times. The next chapter looks into processing and marketing of millets.

5 **PROCESSING AND MARKETING**

5.1 Introduction

This chapter looks into processing of millets by traditional manual methods and by machines, and the mode by which millets are sold. It also attempts to understand whether the machines for processing millets are accessible or not.

5.2 **Processing Units**

There are two ways by which millet is being processed for consumption, manually and through machine. Table-5.1 shows that 52.4 per cent HHs process millets manually using an instrument called Chaki. 35.0 per cent HHs process millet by using machine, 12.6 per cent HHs process using both manual and machine.

			h	Phiring	gia	Raikia		Total	
No	%	No	%	No	%	No	%	No	%
116	33.5	88	93.6	31	59.6	94	69.1	329	52.4
168	48.6	0	0.0	14	26.9	38	27.9	220	35.0
62	17.9	6	6.4	7	13.5	4	2.9	79	12.6
346	100.0	94	100.0	52	100.0	136	100.0	628	100.0
	116 168 62	116 33.5 168 48.6 62 17.9 346 100.0	116 33.5 88 168 48.6 0 62 17.9 6 346 100.0 94	11633.58893.616848.600.06217.966.4346100.094100.0	116 33.5 88 93.6 31 168 48.6 0 0.0 14 62 17.9 6 6.4 7 346 100.0 94 100.0 52	11633.58893.63159.616848.600.01426.96217.966.4713.5346100.094100.052100.0	116 33.5 88 93.6 31 59.6 94 168 48.6 0 0.0 14 26.9 38 62 17.9 6 6.4 7 13.5 4 346 100.0 94 100.0 52 100.0 136	116 33.5 88 93.6 31 59.6 94 69.1 168 48.6 0 0.0 14 26.9 38 27.9 62 17.9 6 6.4 7 13.5 4 2.9 346 100.0 94 100.0 52 100.0 136 100.0	116 33.5 88 93.6 31 59.6 94 69.1 329 168 48.6 0 0.0 14 26.9 38 27.9 220 62 17.9 6 6.4 7 13.5 4 2.9 79 346 100.0 94 100.0 52 100.0 136 100.0 628

Table 5.1: Method of Processing of Millets

Source: Field Survey

Table-5.2 shows that 91 per cent HHs depend on other pulveriser, but those units are very far from their own villages. Only 9.0 per cent HHs use own machine for the processing millets.

		•		•		0				
Processing	Darir	ngbadi	Kotga	arh	Phirir	ngia	Raiki	a	Total	
units	No	%	No	%	No	%	No	%	No	%
Own	18	7.8	1	16.7	7	33.3	1	2.4	27	9.0
machine										
In other	: 212	92.2	5	83.3	14	66.7	41	97.6	272	91.0
pulveriser										
Total	230	100.0	6	100.0	21	100.0	42	100.0	299	100.0
Source: Field Su	irvev									

Table 5.2: Availability and Accessibility of Processing Unit

Source: Field Survey

5.3 Accessibility to Processing Unit

It is observed that 60.3 per cent HHs are able to access processing unit within 10 km distance. 38.6 per cent can access within 11-20 km distance and 1.1 per cent use machine, which is more than 20 km distance from their village shown in Table 5.3.

Distance		Darin	Igbadi	Kotg	arh	Phiri	ngia	Raik	ia	Total	
		No	%	No	%	No	%	No	%	No	%
0-10 Km	l	126	59.4	3	60.0	2	14.3	33	80.5	164	60.3
11-20 Ki	m	86	40.6	2	40.0	12	85.7	5	12.2	105	38.6
20	Km	0	0.0	0	0.0	0	0.0	3	7.3	3	1.1
Above											
Total		212	100.0	5	100.0	14	100.0	41	100.0	272	100.0
Source: Fi	Source: Field Survey										

Table 5.3: Distance to Access Processing Unit

5.4 Marketing

Table 5.4shows that 51 HHs sold their millets to mill owner, 12 HHs sold to middlemen, 67 HHs sold to local traders, 52 HHs sold in weekly market and highest 82 HHs sold their millets to the money lenders.

Table 5.4: Distribution of Households by Mode of Selling Millets across Blocks

Blocks	Mill -	Owner	Middl	eman	Local	Trader	Week	ly-Hat	Mone	у-	Total	
									Lende	er		
	No	%	No	%	No	%	No	%	No	%	No	%
Daringbadi	27	52.9	7	58.3	8	11.9	45	86.5	3	3.7	67	30.3
Kotgarh	1	2.0	0	0.0	46	68.7	0	0.0	1	1.2	47	21.3
Phiringia	1	2.0	0	0.0	4	6.0	2	3.8	32	39.0	38	17.2
Raikia	22	43.1	5	41.7	9	13.4	5	9.6	46	56.1	69	31.2
Total	51	100.0	12	100.0	67	100.0	52	100.0	82	100.0	221	100.0

Source: Field Survey

Note: The row totals are not additions across mode of selling millets, as a household can sell in multiple ways

5.5 Conclusion

Before implementation of OMM, more than 60 per cent HHs could access the processing machine within 10 kms. Because it is not easily accessible, they are bound to process their millets manually at home with traditional equipment called *chakki* locally known as *ghuruna*. The farmers sold their millets in multiple ways such as weekly haat, local trader, mill owner, middle man and money lenders.

6 MAJOR FINDINGS

- \$6.1 Agriculture is one of the important economic activities of almost all HHs (94.4%) in the study area. Across blocks, it is as follows: 100 percent in Daringbadi, Phiringia and Raikia and 62.8 per cent in Kotagarh.
- **\$6.2** The total production of millets is 411.7 quintals, of which *ragi* is 360.6 quintals, *jahna* is 18.2 quintals, *kangu* is 10.8 quintals and *suan* is 22.1 quintals.
- \$6.3 The yield of millets is 2.2 qtls/ha. Across millet crops, the yield of *ragi* is 2.2 qtls/ha, the yield of *jahna* is 2.2 qtls/ha, the yield of *kangu* is 1.2 qtl/ha and *suan* is 4.2 qtls/ha.
- **\$6.4** The HHs were using locally available seeds in the study area.
- **\$6.5** Only 4 HHs were found to have adopted SMI method during the baseline survey.
- **\$6.6** Millets are consumed in all seasons and in all meals during the day.

ସଂଯୁକ୍ତ ଗୃହ - ୧

ଓଡିଶାର ଆଦିବାସୀ ଅଞ୍ଚଳରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ବିକାଶ ନିମିତ୍ତ ସ୍ପତନ୍ତ୍ର କାର୍ଯ୍ୟକ୍ରମ ପରିବାର ସମ୍ବନ୍ଧୀୟ ପ୍ରଶ୍ୱାବଳୀ

୧. ପରିବା	ରର ଚିହ୍ନଟ:		ସାଙ୍କେତିକ	ସଂଖ୍ୟା:
(କ)	ଚାଷୀଙ୍କ ନାମ:			
	ଉତ୍ତରଦାତାଙ୍କ ନାମ:			
(ଖ)	ଗ୍ରାମ:	ଗ୍ରାମପଞ୍ଚାୟତ:	ବ୍ଲକ:	ଜିଲ୍ଲା:
(ଗ)	ବର୍ଗ: (i) ହରିଚ୍ଚନ	(ii)ଆଦିବାସୀ (iii) ଅନ୍ୟାନ୍ୟ ପନ୍ଥୁ	ଆବର୍ଗ(iv) ସାମାଜିକ ଏବଂ ଆର୍ଥିକ	ଅନଗ୍ରସର ଶ୍ରେଶୀ
	(∨ ସାଧାରଣ(ଉତ	ଲେଖକର)		
(ଘ)	ଉପଜାତି (ଉଲ୍ଲେଖକର	2)		
ଙ)	ଧର୍ମ: (i) ହିନ୍ଦୁ	(ii) ମୁସଲମାନ (iii)	ଖ୍ରୀଷିଆନ(i∨) ଅନ୍ୟାନ୍ୟ(ଉଲ୍ଲେଖକ	ລ)
(ଚ)	ବି. ପି.ଏଲ ଶ୍ରେଶୀରେ	ଅନ୍ତର୍ଭୁକ୍ତକି ? ହଁ/ ନା		
(ଚ୍ଛ)	ଘରରପ୍ରକାର ଏବଂ	କୋଠାରୀ ସଂଖ୍ୟା: ପକ୍କା-	ଆଶିଂକପକ୍କା	- ମାଟି-
9.	ସରକାରଙ୍କ କ୍ଷୁଦ୍ରଶସ୍ୟ	ମିଶନରେ ଭାଗୀଦାର ଅଛନ୍ତିକି?	ହଁ/ ନା	
୩.	ପରିବାରର ମୋଟ ସଙ୍	ନସ୍ୟଙ୍କ ସଖ୍ୟା:		
	ଲିଙ୍ଗ		ବୟସବର୍ଗ(ବର୍ଷରେ)	
		୧ ୪ବର୍ଷ ପର୍ଯ୍ୟନ୍ତ	୧୫-୬୦ବର୍ଷ ମଧ୍ୟରେ	୬୦ବର୍ଷରୁ ଉର୍ଦ୍ଧ

ପୁରୁଷ	

୪. ପରିବାରର ଅର୍ଥନୈତିକ କାର୍ଯ୍ୟକ୍ରମ (ଗତବର୍ଷ):

ମହିଳା

(କ) ଚାଷ/ଆନୁସଂଗିକ କାର୍ଯ୍ୟ/ ଚାକିରୀ (ସରକାରୀ/ଘରୋଇ)/ବ୍ୟବସାୟ/ଜଙ୍ଗଲଜାତ ଦ୍ରବ୍ୟ ସଂଗ୍ରହ/ଅନ୍ୟାନ୍ୟ (ଉଲେଖକର)

(ଖ) ପରିବାରର ଆନୁମାନିକ ବାର୍ଷିକ ଆୟ (ଟଙ୍କାରେ):______

୫. ଆପଣ କୌଣସି ଠାରୁରଣ କରିଛନ୍ତିକି? ହଁଁ/ ନା

ଯଦି ହଁ, କେତେ ଟଙ୍କା ------ କେଉଁ ସଂସ୍ଥାରୁ ଆଶିଛନ୍ତି ? -----

୬. ମୋଟ ଜମିର ପରିମାଣ (ଗତବର୍ଷ) (ହେକ୍ଟରରେ):

(ଖ) ଚାଷ କରିଥିବା ଢମିର ପରିମାଣ (ସ୍ଥାନୀୟ ଏକକରେ) -----

(ଗ) ମୋଟ ଜଳସେଚିତ କମିର ପରିମାଣ (ସ୍ଥାନୀୟ ଏକକରେ) -----

୭. କ୍ଷୁଦ୍ରଶସ୍ୟ କିପରି ଚାଷ କରିଥିଲେ? (କ) କେବଳ ଗୋଟିଏ ଶସ୍ୟ (ଖ) ଅନ୍ୟଶସ୍ୟ ସହିତ (ଅନ୍ୟଶସ୍ୟର ନାମଲେଖ)

୮. ବିହନର ବ୍ୟବହାର (ଗତବର୍ଷ)

(କ) ବ୍ୟବହାର କରିଥିବା ବିହନର ପରିମାଣ (କିଲୋଗ୍ରାମରେ) -----

(ଖ) ବିହନର ପରିମାଣ ଯଥେଷ୍ଟଥିଲା କି? ହଁ/ନା

(ଗ) ବିହନକୁ ବିଶୋଧନ କରିଥିଲେ କି? ହଁ/ ନା

(ଘ) ବିହନରମାନ କିପରିଥିଲା? i) ଭଲii) ସାଧାରଣiii) ଖରାପ

୯. କ୍ଷୁଦ୍ରଶସ୍ୟଚାଷପ୍ରଣାଳୀ(ଗତବର୍ଷ)

ଚାଷ ପ୍ରଣାଳୀ	ଠିକ ଚିହ୍ନ ଦିଅନ୍ତୁ	ଚାଷ ପ୍ରଣାଳୀ	ଠିକ ଚିହ୍ନ ଦିଅନ୍ତୁ
ଅଙ୍କୁରୋଦ୍ଶମ ପରୀକ୍ଷଣ		ମେସିନ୍ ନ୍ୱାରାଘାସବଛା	
ଛଟାବୁଣା		କେତେଥର ଘାସବଛା ହୋଇଥିଲା(ସଂଖ୍ୟାରେ)	
ଧାଡିବୁଶା		ଜୈବିକ ସାରର ବ୍ୟବହାର	
ୁରଆ		ଜୈବିକ କୀଟନାଶକର ବ୍ୟବହାର	
ଏସ.ଏମ.ଆଇ ପ୍ରଣାଳୀ		ରାସାୟନିକ ସାରର ବ୍ୟବହାର	
ହାତରେ ଘାସବଛା		ରାସାୟନିକ କୀଟନାଶ କରବ୍ୟବହାର	

୧୦.କ୍ଷୁଦ୍ରଶସ୍ୟରଉତ୍ପାଦନଏବଂବ୍ୟବହାର(ଗତବର୍ଷ)

କ୍ଷୁଦ୍ରଶସ୍ୟର	କେତେ ଜମିରେ ହୋଇଥିଲା	ମୋଟଉତ୍ପାଦନ	ଘରେ ବ୍ୟବହୃତ	ବିହନପାଇଁରଖିଥିବା	ବିକ୍ରିକରିଥିବା	ମୁଲ୍ୟ
ପ୍ରକାର	(ଏକରରେ)	(କ୍ୱିଷ୍ଟାଲରେ)	(କ୍ୱିଣ୍ଣାଲରେ)	ପରିମାଣ	ପରିମାଣ	(କ୍ୱିଷ୍ଟାଲପିଛା/
				(କିଲୋଗ୍ରାମରେ)	(କ୍ୱିଷ୍ଟାଲରେ)	ଟଙ୍କାରେ)

୧ ୧ . ଗତବର୍ଷ ଆପଶଙ୍କ ଘରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ପରିମାଣ ଯଥେଷ୍ଟ ଥିଲା କି? ହଁ/ ନା

(କ) ହାରାହାରି ବାର୍ଷିକ ବ୍ୟବହୃତ ପରିମାଣ ------ ଖ) ହାରାହାରି ବାର୍ଷିକ ଆବଶ୍ୟକତା------

୧୨. କେଉଁ ସମୟରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ବ୍ୟବହାର କରିଥାଆନ୍ତି? i) ସକାଳେ ii) ଖରାବେଳେ iii) ସଂଧ୍ୟାବେଳେ i∨) ରାତିରେ

୧୩. କେଉଁ ରତୂରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ବ୍ୟବହାର କରିଥାଆନ୍ତି? i) ଗ୍ରୀଷ୍ମରତୁ ii) ବର୍ଷାରତୁ iii) ଶୀତରତୁ

୧୪. ଆବଶ୍ୟକ ପଡିଲେ କେଉଁଠାରୁ କ୍ଷୁଦ୍ରଶସ୍ୟ କିଶିଥାଆନ୍ତି?

i) ବାହାରୁ ii) ପଡୋଶୀ/ ସାଙ୍ଗସାଥୀ/ ସମ୍ପର୍କୀୟଠାରୁiii) ଅନ୍ୟାନ୍ୟ(ଉଲ୍ଲେଖକର)

୧୫. ଆପଣ କ୍ଷୁଦ୍ରଶସ୍ୟକୁ କିପରି ପ୍ରସ୍ତୁତ କରନ୍ତି? i) ହାତରୋii) ମେସିନ୍ ସାହାଯ୍ୟରେ

ଯଦି ଉତ୍ତର, ମେସିନ୍ ସାହାଯ୍ୟରେହୋଇଥାଏ ? ନିକର ମେସିନ୍ ଅଛି କି? ହଁ/ ନା

୧୬. ଆପଣ କ୍ଷୁଦ୍ରଶସ୍ୟରେ କିପ୍ରକାରର ଖାଦ୍ୟ ପ୍ରସ୍ତୁତି କରିଥାଆନ୍ତି ?

ଜାଉ-୧, ପିଠା-୨, ତମ୍ପୋ-୩, ମାଶ୍ଚିଆ-ତୋରାଶୀ-୪, ହାଶ୍ଚିଆ-୫, ଅନ୍ୟାନ୍ୟ (ଉଲ୍ଲେଖକର)-୬

୧୭. ମହିଳାମାନେ କ୍ଷୁଦ୍ରଶସ୍ୟ ପ୍ରସ୍ତୁତି କରିବାରେ କିଛି ଅସୁବିଧାର ସନ୍ଧୁଖୀନ ହେଉଛନ୍ତିକି? ହଁ/ ନା

୧୮. କ୍ଷୁଦ୍ରଶସ୍ୟର ବିକ୍ରୟ ପ୍ରଣାଳୀ:

i) ମିଲ୍ମମାଲିକଙ୍କୁ ii) ମଧ୍ୟସ୍ଥଙ୍କୁ iii) ସ୍ଥାନୀୟ ବ୍ୟବସାୟୀଙ୍କୁ iv) ବଜାର v) ହାଟରେ/ସାହୁକାରଙ୍କୁ vi) ଅନ୍ୟାନ୍ୟ(ଉଲ୍ଲେଖକର)

୧୯. ବିକ୍ରୟସ୍ଥାନ ଏବଂ ଗ୍ରାମ ମଧ୍ୟରେ ଦୁରହ୍ୱ (କିଲୋମିଟରରେ)

ତଦନ୍ତକାରୀଙ୍କ ସ୍ୱାକ୍ଷର

୨. କ୍ଷୁଦ୍ରଶସ୍ୟ ଚାଷର ପରିବର୍ତ୍ତନ:		
ସୂଚାଙ୍କ	ପୂର୍ବରୁ	ଗତବର୍ଷ
ଜମିର ପରିମାଶ (ଏକରରେ)		
କିସମ		
ଅଧିକ ଅମଳକ୍ଷମ		
ପାରମ୍ପରିକ		
ଚାଷପ୍ରଣାଳୀ		
ଛଟାବୁଣା		
ଧାଡିବୁଶା		
ଏସ.ଏମ.ଆଇ		
ବଛାବଛି (ଲୋକମାନଙ୍କଦ୍ୱାରା)		

ମାଣ୍ଡିଆ ,	ଶୁଆଁ	କାଙ୍ଗୁ	କୋଦୋ ,	ଅନ୍ୟାନ୍ୟ ଉଲ୍ଲେଖକର	

୧ . ଗ୍ରାମର କେତେ ଘର କ୍ଷୁଦ୍ରଶସ୍ୟ ଚାଷ କରନ୍ତି :

ବିଭାଗ-୧: କ୍ଷୁଦ୍ରଶସ୍ୟର ଉତ୍ପାଦନ

ବି. ଦ୍ର: ଗ୍ରାମମୁଖିଆ, ଗ୍ରାମର ଶିକ୍ଷିତ ବ୍ୟକ୍ତି, ପଞ୍ଚାୟତର ନିର୍ବାଚିତ ସଭ୍ୟ,କ୍ଷୁଦ୍ରଶସ୍ୟା ଚାଷୀ ଏବଂ ଅନ୍ୟାନ୍ୟ ପ୍ରମୁଖ ତଥ୍ୟ ପ୍ରଦାନକାରୀ

କ୍ରନଂ .	ନାମ	ଲିଙ୍ଗ	ବୟସ	ଜାତି/ଗୋଷ୍ଟୀ	ଶିକ୍ଷା	ବୃତ୍ତି	ସ୍ୱାକ୍ଷର/ଟିପଚିହ୍ନ

୧ .ଆଲୋଚନାରେ ଅଂଶଗ୍ରହଣ କରିଥିବା ବ୍ୟକ୍ତି ମାନଙ୍କ ତଥ୍ୟାବଳୀ:

ଗ୍ରାମ:_____ ଗ୍ରାମପଞ୍ଚାୟତ:_____ ବ୍ଲକ:_____ ଜିଲ୍ଲା:_____ ତାରିଖ:_____ ସମୟ: _____

ଓଡିଶାର ଆଦିବାସୀ ଅଞ୍ଚଳରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ବିକାଶ ନିମିତ୍ତ ସ୍ପତନ୍ତ୍ର କାର୍ଯ୍ୟକ୍ରମ

ଗୋଷୀ ଏବଂ ଦଳ ମାନଙ୍କ ସହିତ ଆଲୋଚନା

ନବକୃଷ ଚୌଧୁରୀ ଉନ୍ନୟନ ଗବେଷଣା କେନ୍ଦ୍ର ଭୁବନେଶ୍ୱର

ବଛାବଛି (ମେସିନ୍ ସାହାଯ୍ୟରେ)	
କେତେଥର ବାଛନ୍ତି	
କେଉଁ ଖତସାର ବ୍ୟବହାର କରନ୍ତି (କମ୍ପୋଷ୍ଟଖତ)	
ରାସାୟନିକସାର	
କ୍ଷୁଦ୍ରଶସ୍ୟ ବୁଣାଠାରୁ ଅମଳ ପର୍ଯ୍ୟନ୍ତ କେତେ ସମୟ ଲାଗେ(ଦିନ)	
କେଉଁ ରତୁରେ	
ଖରିଫ ଋତୁ	
ରବି ରତୁ	
ସମର ଋତୁ	
ଅମଳର ମାତ୍ରା (ହେକ୍ଟରପିଛାକ୍ୟୁଣ୍ଟାଲରେ)	
ପ୍ରକାର- ୧	
ପ୍ରକାର- ୨	

ବିଭାଗ:- ୨ (କ୍ଷୁଦ୍ରଶସ୍ୟର ବ୍ୟବହାର)

୧ . କ୍ଷୁଦ୍ରଶସ୍ୟ ସମ୍ପର୍କିତ ପାରମ୍ପରିକ ଉସ୍ସବ କିଛି କରାଯାଏ କି? ହଁ/ ନା
ଯଦି ହଁଁ: ୧) ପାରମ୍ପରିକ ଉସବ, ୨. ବିହନ ବଦଳ, ୩. ବିଭିନ୍ନ ପ୍ରକାରର ଖାଦ୍ୟପ୍ରସ୍ତୁତି, ୪. ପ୍ରଦର୍ଶନୀ କିମ୍ବା ମେଳାର ଆୟୋଜନ
୨. କେଉଁ ମାସ/ରତୁରେ କ୍ଷୁଦ୍ରଶସ୍ୟର ଅଧିକ ବ୍ୟବହାର କରାଯାଇ ଥାଏ? ମାସରତୁରତୁ
କାରଣ କଣ - ଉଲ୍ଲେଖକର
୩. କ୍ଷୁଦ୍ରଶସ୍ୟରୁ ପ୍ରସ୍ତୁତ ଖାଦ୍ୟକୁ ଅଙ୍ଗନୱାଡି ମାନଙ୍କରେ ଦିଆଯିବା ପାଇଁ ଆପଣ ଚାହୁଁଛନ୍ତି କି? ହଁ/ ନା
ଯଦି ହଁ, କାରଣ କଣ ଉଲ୍ଲେଖକର
୪. କ୍ଷୁଦ୍ରଶସ୍ୟରୁ ପ୍ରସ୍ତୁତି ଖାଦ୍ୟକୁ ବିଦ୍ୟାଳୟ ମାନଙ୍କରେ ଦିଆଯିବାପାଇଁ ଆପଣ ଚାହୁଁଛନ୍ତି କି? ହଁ/ ନା
ଯଦି ହଁ, କାରଣ କଣ ଉଲ୍ଲେଖକର
୫. କ୍ଷୁଦ୍ରଶସ୍ୟରୁ ପ୍ରସ୍ତୁତି ଖାଦ୍ୟକୁ ଛାତ୍ରାବାସ ମାନଙ୍କରେ ଦିଆଯିବା ପାଇଁ ଆପଣ ଚାହୁଁଛନ୍ତି କି? ହଁ/ ନା
ଯଦି ହଁ, କାରଣକଣ ଉଲ୍ଲେଖକର
୬. କ୍ଷୁଦ୍ରଶସ୍ୟକୁ ସହାୟକମୂଲ୍ୟ କେନ୍ଦ୍ରମାନଙ୍କରେ ଲୋକମାନଙ୍କୁ ବିତରଣ କରାଯିବାପାଇଁ ଆପଣ ଚାହୁଁଛନ୍ତିକି? ହଁ/ ନା
ଯଦି ହଁ, କାରଣକଣ ଉଲ୍ଲେଖକର
ବିଭାଗ: ୩ – କ୍ଷୁଦ୍ରଶସ୍ୟର ପ୍ରସ୍ତୁତିପ୍ରଣାଳୀ
୧.ସାଧାରଣତଃ ଲୋକମାନେ କିପରି କ୍ଷୁଦ୍ରଶସ୍ୟକୁ ପ୍ରକ୍ରିୟା କରଣକରନ୍ତି* ?
୨.କେତେ ପରିବାର କ୍ଷୁଦ୍ରଶସ୍ୟର ପ୍ରକ୍ରିୟାକରଶ ନିଜ ହାତରେ କରନ୍ତି?
୩.ଗ୍ରାମରେ କିମ୍ବା ପଞ୍ଚାୟତରେ କ୍ଷୁଦ୍ରଶସ୍ୟକୁ ପ୍ରସ୍ତୁତ କରିବାପାଇଁ ମେସିନ୍ ଅଛିକି ? ହଁ/ ନା
ଯଦିହଁ, ତେବେ କେତୋଟି ମେସିନ୍ ଅଛି?
ଯଦିନା, ତେବେ କେତେ ଦୁରବ୍ୱରେ ମେସିନ୍ ଉପଲହ୍ଚ ହେଉଅଛି,(କିଲୋମିଟରରେ)
୪.ଗ୍ରାମଠାରୁ କେତେଦୂରରେ କ୍ଷୁଦ୍ରଶସ୍ୟକୁ ପ୍ରସ୍ତୁତି କରିବାପାଇଁ ଯନ୍ତ୍ରାଂଶ ଉପଲହ୍ଷ ଅଛି? (କିଲୋମିଟରରେ)
(i*ହାତରେଗୁଈକରିମେସିନ୍ଦାରାବଛାବଛିକରିବାଚୋପାଛଡାଇ (i∨ ,ହାତରେବଛାବଛିକରିବାଚୋପାଛଡାଇ (iii ,ମେସିନ୍ଦାରାଗୁଈକରି(ii ,

ବିଭାଗ: ୪ -ବିକ୍ରୟ ପ୍ରଣାଳୀ

୧ .ବର୍ତ୍ତମାନ ବିକ୍ରୟ କରାଯାଉଥିବା କ୍ଷୁଦ୍ରଶସ୍ୟର ପ୍ରଣାଳୀ*
i*ଚାଷ ଜମିରୁ ସିଧା ବିନା ପ୍ରକ୍ରିୟା କରଣରେ,ii)ବଛାବଛିକରି,iii) ଚୋପା ଛଡାଇ <u>, i∨) ଗ</u> ୁଷକରି, ∨) ଅନ୍ୟା <u>ନ୍ୟଉଲ୍</u> ଟେଖକର
୨. ଚାଷୀମାନେ ସାଧାରଶତଃ କେଉଁଠାରେ କ୍ଷୁଦ୍ରଶସ୍ୟକୁ ବିକ୍ରୟ କରିଥାଆନ୍ତି?*
ମିଲ୍କାଲିକଙ୍କୁ ii) ମଧ୍ୟସ୍ଥଙ୍କୁ iii) ସ୍ଥାନୀୟବ୍ୟବସାୟୀଙ୍କୁ iv) ବଜାର/ ହାଟରେ v) ସାହୁକାରଙ୍କୁ vi) ଅନ୍ୟାନ୍ୟ(ଉଲ୍ଲେଖକର)
୩. ପାଖ ବିକ୍ରୟ କେନ୍ଦ୍ରର ଦୂରତ୍ୱ କେତେ? (କିଲୋମିଟରରେ)
୪. ପରିବହନର ମାଧ୍ୟମ (କିଲୋମିଟରରେ)

ବଭାଗ: - ୫

ଯଦି ହଁ, କେଉଁ ଷରର ଅଧିକାରୀ ଆସିଥିଲା ?

- i) କୃଷକ ସାଥି, ii) ଗ୍ରାମ୍ୟ କୃଷି କର୍ମଚାରୀ, iii) ବ୍ଲକ ୟରୀୟ (ସହକାରୀ କୃଷି ଅଧିକାରୀ),
- ∨) ଅନ୍ୟାନ୍ୟ ଉଲ୍ଲେଖକର___
- ୨ । କ୍ଷୁଦ୍ରଶସ୍ୟର ଉତ୍ପାଦନ / ବ୍ୟବହାର / ପ୍ରସ୍ତୁତି ଏବଂ ବିକ୍ରିୟାର ଉନ୍ନତିପାଇଁ ଯଦି କିଛି ମତାମତ ଥାଏ, ତେବେ ଉଲ୍ଲେଖ କରନ୍ତୁ

ଦଳଗତ ଆଲୋଚନା ସଂଚାଳନ କରିଥିବା ବ୍ୟକ୍ତିଙ୍କ ସ୍ୱାକ୍ଷର